Al 394D DEEP LEARNING 2024: REINFORCE MAVERICKS

FINAL PROJECT TECHNICAL REPORT

- Shubham Gupta* - Jean Del Rosario Peguero - Emmanuel Rajapandian
shubhamgupta@utexas.edu jcd4284Qutexas.edu emmanuel .rajapandian@utexas.edu
ABSTRACT

We design an automated agent to play SuperTuxKart Ice Hockey which is a game featuring a vast
state space, a diverse action space, and sparse rewards, presenting a highly formidable challenge.
The objective of the agent is to maximize goal scoring in any difficulty and achieve victory in the
match if possible. Our approach involves using imitation learning, combining both Behavioural
Cloning and DAgger, to mimic other agents and learn the optimal strategy for playing the game.
We employ REINFORCE on top of our best imitation agent to adjust the variables of the agent’s
policy in an approach that increases the likelihood of actions that result in higher rewards i.e., an
effective goal-scoring strategy. Our system is designed to exploit potential simplifications in this
complex environment, with the ultimate aim of creating proficient players. We train a neural net
model, inspired by the principles of imitation learning, to support a controller network to play ice
hockey. Our system is state-based, focusing on the state of the game rather than the visual input from
the player’s field of view.

1 Introduction and Motivation

In this ever-growing field of artificial intelligence and games, the task of creating a proficient agent capable of mastering
complex game environments remains an enduring challenge. Our project dives deep into the intersection of these two
domains by focusing on the old-school SuperTuxKart Ice Hockey game. The motivation behind our project flows
from an ambitious goal to tackle multiple challenges simultaneously. We aim to design an automated agent that not
only excels at goal scoring in SuperTuxKart Ice Hockey but also demonstrates adaptability across various difficulty
levels of Al opponents and achieves a positive outcome in each game. This objective reflects our commitment to push
the boundaries of state-based agents in deep learning and overcome the challenges of the game environment’s sparse
rewards and complicated state space.

To address these challenges, we explored and focused on a two-fold strategy. Initially, we used imitation
learning, where an agent replicates the expert’s strategy using a classifier after receiving training data on the states and
actions of the demonstration [Faraz et al. [2019]. Through imitation, the agent was trained to mimic the behavior of the
Jurgen agent providing a solid baseline for subsequent learning. The REINFORCE method was implemented over our
imitated agent to increase the anticipated cumulative rewards i.e., scoring more goals in the Ice Hockey game.

Our project standing at the intersection of deep learning research and gaming, offers significant insights into
the sequential learning approaches in tackling complex game environments such as SuperTuxKart. By prioritizing the
state of the game instead of the visual image input, our system is capable of identifying simplifications and carving the
way for the creation of proficient state-based player agents. Through imitation learning and REINFORCE, our project
aims to create a simplified and holistic approach with the ultimate goal of creating adaptive agents capable of mastering
the SuperTuxKart Ice Hockey game challenges.

*Ordered alphabetically by last name — University of Texas, Austin; Deep Learning; Spring 2024.

FINAL PROJECT TECHNICAL REPORT

2 Methods

In our exploratory phase of the project, each of us explored both state and image based options. However, owing to time
and resource constraints, we finalized on state based agent approach. As part of the deep dive, we compared the test
agent(s) provided by the Instructor, Geofrey, Jurgen, Yann, and Yoshua to a local grader. We iterated the grader 4 times
over each agent. Then, we calculated the agent’s goals, wins, losses, and draws. Finally, we selected the agent that
scored the most goals (since wins do not add up to more goals scored).

H Agent Jurgen Yann Yoshua Geoffrey Score (100) H

Jurgen 6 11 14 15 94
Yann 1 8 7 5 66
Yoshua 1 7 0 1 29
Geoffrey 1 7 7 6 66

Table 1: Average goals scored by each agent (row) against the Local Grader

The Jurgen agent was by far the best-performing agent out of the four. Given the Jurgen agent’s capability to score
more goals than any other agent, we decided to make it our "expert” for the model to emulate and gain understanding.

2.1 Training Dataset

We create training datasets by utilising our agent’s unique extract features function in combination with its behaviour
to extract features from the states of the player, opponent, and ball. A vector value comprised of the agent’s action’s
braking, steering angle, and acceleration is the result for every observation. For this purpose, we created a function
that orchestrates the collection of data by setting up and executing multiple tournament simulations involving different
combinations of agents. We generated the data using the following steps:

* Execute tournament simulations using the tournament . runner module.
* Run commands for various agent match-ups and execute them in parallel.

* Collect data from these simulations which is then used for training and evaluating the performance of agents.

The approach to generating training datasets was to simulate game data by executing tournament simulations of the
Jurgen agent pitted against other agents in a competitive setting and a specified number of games, which is called
Behavioural Cloning [[Stéphane et al.,[2011]]. To enhance this, we also applied DAgger, by running our imitation agent
against other agents and then collecting which action would the expert agent, Jurgen, would have taken. By simulating
multiple matches between various combinations of agents, we gather data on agent performance, identify strengths and
weaknesses, and then subsequently improve our agent strategy through training. To speed up the process of running
multiple simulations, the code utilizes parallel execution by employing a process pool with multiple processes to execute
the tournament simulations concurrently. This parallelization helped us in speeding up the data collection process.
During each simulation, the game states and actions are recorded, providing training data for the imitation learning agent.

Once the game simulations are completed, the recorded game states are processed and formatted for training
the imitation learning agent. Recorded game states are loaded and formatted for training by extracting relevant features
and labels. Expert labels for the training data are obtained by predicting actions using the pre-trained expert agent
(jurgen_agent). After loading the game states, the data is shuffled to introduce randomness and prevent bias during
training. This step ensures that the imitation learning agent learns from a diverse set of examples, enhancing its
adaptability and generalizing its learning. Subsequently, the data is prepared for training after converting it into tensors.

For the REINFORCE-based approach, we collected training data in a 2 vs 2 game setting, focusing on up-
dating the policy network of the first car agent exclusively. This decision originated from the challenge of integrating
information from both agents into a single neural network for simultaneous updating, forcing us to opt for a simpler
strategy. We engaged the agent in a series of game episodes using our parallelized approach, where we played 10
games, with 5 games played against the Jurgen agent and another 5 against the Yann agent. All games were conducted
with the agent acting as the second player.

The data collection and processing stages are the most crucial parts of this project as they make or break the
imitation agent to play in this complex game environment. Our effective way of data collection and organization lays a
proper foundation for training a robust agent capable of mimicking the expert Jurgen.

FINAL PROJECT TECHNICAL REPORT

2.2 Model Architecture

Our deep learning model’s general architecture is largely inspired by the Multi-Layer Perceptron (MLP), a feed-forward
network comprising an input layer, multiple hidden layers, and an output layer. MLPs are characterized by their ability
to learn complex nonlinear relationships in data, owing to the presence of multiple layers and activation functions. In
our case, the ReLU activation functions between the layers introduce nonlinearities, enabling the model to understand
complex patterns in input imitation data. Known as "Universal Approximators" [Hornik et al.,|1989], MLPs with just a
unit hidden layer, substantial number of neurons within that layer have the capacity to represent any finite input-output
mapping problem.

Lineari

Linear2

Output Layer for Acceleration
Linear3
I 7 6d4x1
» G4x1 Output Layer for Steering
INPUT —»

128x64 7 Gdx1

256x128
Output Layer for Braking .
Linear Layer

512x256 (1) ReLy
(| Linear+ Sigmoid activation

Linear + tanh activation

17x512

Figure 1: Model Architecture

The structure consists of several layers that are fully interconnected, with a Rectified Linear Unit (ReLU) activation
function deployed between the layers to introduce non-linear characteristics. The neural network contains four hidden
layers [512, 256, 128, 64], followed by dropout regularization. The dropout regularization helps prevent over-fitting by
arbitrarily setting a fraction of input units to zero during training.

The network has three separate output layers: acceleration, steering, and brake, each responsible for a
specific action parameter in the environment. The acceleration and brake outputs are constrained to the scope [0, 1]
and thus employ the sigmoid activation function to compress the output to this scope, representing probabilities of
acceleration and braking. The steering output is already constrained to the scope [-1, 1] due to the use of the tanh
activation function, which maps the output to this scope.

2.3 Game Environment Class

We create a class that encapsulates the functionality and behavior of the game environment in which the reinforcement
learning agent interacts. It serves as a connector between the RL algorithm and the SuperTuxKart game, providing
methods to reset the environment, take steps, calculate rewards, and extract relevant information from the game state.
The class sets up various other parameters such as team names, the number of players, the maximum score, and other
settings related to the game environment. We chose the icy_soccer_field as our track for the environment to learn
and play. Overall, the Game Environment class acts as an interface between the RL algorithm and the game environment,
providing the necessary functionality for training and evaluation of the RL agent within SuperTuxKart Ice Hockey.

FINAL PROJECT TECHNICAL REPORT

2.3.1 Functions within Environment

We define a reset function within this class which is responsible for resetting the game environment to its initial
state. This involves tasks such as initializing the game race, setting player configurations, and updating the game state.
Additionally, it handles cleanup from previous episodes, such as stopping the race and clearing the environment.

The step function takes care of the interaction between the RL agent and the game environment. It takes
actions provided by the agent, advances the game state, and returns observations, rewards, and information about
whether the episode has ended. Within this method, actions from both teams are processed, the game state is updated,
and rewards are calculated based on the outcome of actions and the current game state.[Toro Icarte et al., 2022]

The reward_fn defines how to calculate the reward for a given state transition. This function considers vari-
ous factors such as the game score, the ball’s location, and the proximity to opponent AI’s goal.

It rewards our agent when it successfully scores a goal. This encourages the agent to actively pursue scoring
opportunities. The reward for scoring a goal is +100, indicating a successful outcome.

o goal_reward (100), if agent scores goal successfully
gal =, otherwise

It also penalizes the agent when the opponent scores a goal. This discourages defensive lapses and motivates the
agent to prevent the opponent from scoring. The penalty for conceding a goal is -100, indicating an unfavorable outcome.

R [goal_penalty (-100), if agent concedes a goal during defense
penalty = 0, otherwise

We also factor the distance between the ball’s location and the opponent’s goal line. This encourages our agent to
advance the ball in proximity to the opponent’s goal line, raising our chance of scoring. The reward is higher when the
ball is in close proximity to opponent’s goal line and diminishes as distance increases.

|max_distance — distance_to_goal|
max_distance

Rproximity =

We also consider the distance between the ball’s location and our agent’s own goal line. This discourages own goals
and defensive vulnerabilities by penalizing the agent for allowing the ball to approach our own goal line.

|max_distance — own_distance_to_goal]
max_distance

Rproximity_penalty =

Rtotal = Rgoal + Rpenalty + 1.5 % Rproximity —1.5x Rproximity_penalty ‘ (1)

Overall, this reward function provides a structured way to reward desirable behaviors and penalize undesirable ones,
guiding our agent towards effective game-play strategies in the SuperTuxKart Ice Hockey environment.

2.4 Model Training

In our model training code, we have an Actor class which serves as the neural network model governing the policy in
reinforcement learning. This model is tasked with mapping the state of the environment to actions such as acceleration,
steering, and braking. The main training loop maintains the iterative update of the policy network using accumulated
experience from interactions with the environment. Initialization sets up the training environment, including the policy
network, and optimizer, alongside hyper-parameters such as the number of episodes, batch size, and learning rate.
Episodes are generated by engaging with game environment based on our current policy, gathering sequences of the
game states, game actions, and rewards from each episode.

The policy network is then updated based on the collected data to maximize expected returns. We repeat
this process for a designated number of iterations. Our model, during training aims to maximize the expected returns, or
cumulative discounted rewards, acquired from environment interactions. This is achieved by minimizing the negative
log-likelihood of the actions undertaken by our policy, weighted by the returns associated with the actions.

FINAL PROJECT TECHNICAL REPORT

Parameter Value Hardware(s) - Model Trained & Tested Upon

Number of Episodes 100 MacBook Pro M2, 8-core GPU, 10-core CPU

Number of parallel Episodes 50 Windows 11, Nvidia RTX 1650Ti

Optimizer(s) Adam, AdamW, SGD Google Colab T4 GPU

Model Iterations 50, 75, 100 Kaggle Nvidia Tesla P100 GPU

Batch Size(s) 64, 128, 256 Runpod Ubuntu Linux, Nvidia RTX A4000

Learning rate(s) 3e—5, le—4, le—5 AWS EC2 g5.2xlarge Nvidia A10G GPU

Ball locations [0, 1], [O, -1], [1, O], [-1, O] MacBook M3 Pro, 14-core GPU, 11-core CPU
Table 2: Parameter(s) combinations used for training Table 3: Hardware Details

Overall, our model training process was a meticulous process aimed at updating the parameters of the model to build an
effective policy for maximizing rewards within the environment of the SuperTuxKart Ice Hockey game.

3 Results & Performance

3.1 Local Grader Results

For our team, changing the data collection and exploring different algorithms such as imitation learning, Q-Learning,
and REINFORCE [Bhatnagar, 2023 [Williams, [1992]] on imitation learning offered various improvements in model
performance. We optimised the agent for multiple in-game scenarios by fine-tuning each of them. We determined that a
good model was one in which we outscored the other agents that were presented against our agent. In order for our
algorithm to learn how to score goals from different puck start positions, it was essential to collect accurate data. Even
though our training took hours by running the Ice Hockey Engine, and simulating hundreds of games, our effective data
collection allowed the RL agent to learn and replicate the Jurgen agent’s performance.

In our initial observation into the implementation of the REINFORCE algorithm, we noticed a trend wherein
prolonged training adversely affected the model’s efficiency. Initially, during early iterations of model’s training loop,
improvements were noted in the model’s efficacy. However, as the training continued, typically after 20 iterations,
a distinct decline in model performance was noticed. This phenomenon is indicative of a critical threshold beyond
which extended training leads to a degradation rather than enhancement of the model’s capabilities. Following are the
expected log returns from the first 3 episodes of our training of the RL agent on our machines.

Log Returns Across lterations for Each Episode

—— Episode 0
Episode 1
—— Episode 2

140000 A

120000 A

100000 A

80000 A

60000 -

Log Returns

40000 A

20000 A

L R P

0

T T T T T
0 50 100 150 200 250 300
Iterations

Figure 2: Expected Log returns across 300 iterations of each episode

For our best-performing agent locally, the best dataset we created was by playing against the Jurgen agent 5 times and
against the Yann agent 5 times in which all the games were played with the agent acting as the second player. It was a 2
vs 2 game setting focused completely on the policy network update of the first car agent. Our next contribution to the

FINAL PROJECT TECHNICAL REPORT

RL agent’s success was our model architecture pooled with our reward function. Our first model was a simple MLP
with just 2 hidden layers with dropout regularization, which resulted in rather poor performance against the local grader
agents scoring a maximum of 60/100 after hours of training. Adding more hidden layers with a proper number of
nodes, removing the dropout layer, and tweaking the optimizer increased the performance. So just by modifying the
architecture and data collection our model showed considerable improvements. To create the required data, our model
makes use of the same collection of 17 features that are present in the feature extraction function of the Jurgen agent.

Here is a table presenting the outcomes of our model’s performance across different datasets, hyper-parameters, and
methodologies.

Model Technique Average Goals Local Grader Scores
2-Layer Plain MLP Imitation Learning w/ initial data collection 0.68 79, 60, 67, 65, 72
4-Layer MLP w/ dropout Imitation Learning w/ Increased batch-size 0.81 82, 88, 70, 85, 80
4-Layer MLP w/o dropout REINFORCE on best Imitation agent 1.11 91, 94, 91, 94, 97
4-Layer MLP w/o dropout REINFORCE w/ new data collection technique 1.28 100, 97, 94, 100, 97

Table 4: Results of running various models trained on multiple datasets through the local grader

We immediately noticed that increasing the hidden layers from 2 to 4 significantly improved the number of goals scored
by our agent in the Local grader. Additionally, we noticed that grader results were varying on different machines, so we
settled for a model with robust performances across all machines (all the packages were of the same version across
different systems).

Games Won, Lost, Drawn Against each Agent by our RL Agent

Goals Scored against each Agent by our RL agent
6
5] ‘
£ 4-
2-
75-
0-
yann yoshua

snd ! po o
1} ! !) Agent
geoffrey jurgen yann yoshua

Agent

Result

W o
H -
B

s
B
No. of Wins

Goals Scored

(b) Goals Scored by our final Agent against the Local Grader
(a) Win, Loss, Draw Statistics against Local Grader Agents Agents

3.2 Canvas Grader Results

One of the main reasons why we built and tested our model on multiple hardware was to make sure our model was
robust in performance irrespective of the PyTorch compatibility in various systems as described in hardware details
table[3] Our best model locally scored consistently above 90 on multiple machines 4] and hence we decide to upload the
same jit file to the canvas grader to assess our RL agent’s performance against tougher agent opponents. We were
happy to observe that our agent did not deviate much from the the local grader scores and scored 16 goals against 4
agents in 4 games each. Following is the canvas grader output:

Agent Goals Scored Results

Geoffrey 7 goalsin 4 games (3:0 1:0 2:0 1:0)
Jurgen 2 goals in 4 games (0:3 0:3 0:1 2:1)
Yann 4 goals in 4 games (0:0 0:1 2:1 2:0)
Yoshua 3 goalsin 4 games (0:1 2:0 0:0 1:1)

Table 5: Canvas grader result of our best agent; Total: 82/100

FINAL PROJECT TECHNICAL REPORT

4 Conclusions

In our project, we achieved success in development of our agent crossing 80-point threshold on the online grader,
exhibiting reproducibility of results. Our methodology was centered on gathering training data within a 2 vs 2 game
context, with a specific emphasis on refining the policy network of the primary car agent. The finalized model
architecture is a sequence of fully interconnected linear layers, with ReLU activation. Remarkably, our agent had a
commendable performance, averaging 1.28 goals per game against the local grader.

An issue our team encountered during this project was the time-intensive nature of model training, since we did not
have access to high-performance GPU resources. Moreover, the lack of precise information regarding online grader
machine, required us to build a comprehensive model which scores well across multiple computing machines.

Moving forward, avenues for enhancing our agent’s capabilities include exploring U-Net architectures, adding residual
and skip connections. Additionally, fine-tuning both the training dataset and model parameters could help us augment
the agent’s goal-scoring proficiency to even greater scales.

4.1 Future Enhancement & Other Explorations

In this section, we discuss future enhancements and other explorations related to our work on SuperTuxKart Ice Hockey.
While our current methodology has yielded promising results, there are several avenues for improvement and further
investigation. As a future enhancement we could scrutinize aspects such as player interaction, kart behavior optimization,
and incorporating RL feedback to build a robust agent which can maneuver the game environment effectively.

4.1.1 Training Data

In our training data, we acknowledge the potential for further refinement in our methodology by incorporating game-play
experiences where the agent assumes the role of the first player as well. This aspect presents an avenue for enhancing the
robustness and adaptability of our trained agent by capturing a broader spectrum of game-play scenarios and dynamics.

4.1.2 Q-Learning

We have also attempted to employ a Deep Q-learning (DQN) approach to train an agent to play a soccer game. Our
agent interacts with the game environment acquiring capability to take optimal actions to score goals and win the game.
In our implementation we established an Agent class responsible for engaging with the environment, executing actions,
and retaining experiences within a replay buffer. This agent’s deep neural network estimates the predicted future reward
for each action, which is its core principle. During training, the agent explores the environment using an epsilon-greedy
strategy, balancing between random explorations and exploiting its learned knowledge. A separate target network is
also used to improve the stability of training. This approach utilizes experience replay to improve training efficiency
and a separate target network to stabilize the learning process.

References

Torabi Faraz, Warnell Garrett, and Stone Peter. Generative adversarial imitation from observation. In ICML Workshop
on Imitation, Intent, and Interaction, PMLR 97, 2019, pages 3—-6. ICML, 2019. URL https://arxiv.org/pdf/
1807.06158.pdfl

Ross Stéphane, J.Gordon Geoffrey, and Bagnell J.Andrew. A reduction of imitation learning and structured prediction
to no-regret online learning. In /4th International Conference on Artificial Intelligence and Statistics (AISTATS)
2011, pages 2-7. Carnegie Mellon University, 2011. URL https://arxiv.org/pdf/1011.0686.pdf,

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators.
In Neural Networks, Vol. 2, pages 356-399. University of California, San Diego, 1989. URL https://wuw!
sciencedirect.com/science/article/abs/pii/0893608089900208!

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A. Mcllraith. Reward machines: Exploiting
reward function structure in reinforcement learning. In Journal of Artificial Intelligence Research. Vector Institute,
Toronto, ON, Canada, 2022. URL https://arxiv.org/pdf/2010.03950.pdf.

Shalabh Bhatnagar. The reinforce policy gradient algorithm revisited. Indian Institute of Science, 2023. URL
https://arxiv.org/pdf/2310.05000.pdf.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. In
Machine Learning, Volume 8, pages 229-256. Northeastern University, Boston, 1992. URL https://link,
springer.com/article/10.1007/BF00992696|

https://arxiv.org/pdf/1807.06158.pdf
https://arxiv.org/pdf/1807.06158.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://www.sciencedirect.com/science/article/abs/pii/0893608089900208
https://www.sciencedirect.com/science/article/abs/pii/0893608089900208
https://arxiv.org/pdf/2010.03950.pdf
https://arxiv.org/pdf/2310.05000.pdf
https://link.springer.com/article/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696

	Introduction and Motivation
	Methods
	Training Dataset
	Model Architecture
	Game Environment Class
	Functions within Environment

	Model Training

	Results & Performance
	Local Grader Results
	Canvas Grader Results

	Conclusions
	Future Enhancement & Other Explorations
	Training Data
	Q-Learning

