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Abstract

Dataset artifacts pose a challenge in NLP,
often leading models to perform well on
benchmark datasets but falter in real-world
applications. In this research, we tackled
these artifacts using the MultiNLI dataset
by fine-tuning the ELECTRA-small model
across various genres, initially achieving a
baseline accuracy of 80.66%. To address
specific weaknesses, we employed con-
trast set and synthetically generated ad-
versarial evaluations to probe model vul-
nerabilities. This approach was the cor-
nerstone of our ensemble-based debias-
ing strategy, utilizing a weak-strong model
framework. The weak model captured su-
perficial artifacts, while the strong model
learned residuals of target labels. During
inference, our novel approach of combin-
ing logits from weak-strong models im-
proved accuracy to 80.19%.

1 Introduction

1.1 Background and Motivation

Natural Language Processing (NLP) models have
achieved remarkable performance on benchmark
datasets, yet they often rely on dataset arti-
facts—spurious correlations that do not reflect true
task understanding. These artifacts can lead to
models that perform well on in-distribution data
but struggle in real-world applications where such
artifacts are absent. This challenge is particularly
noticeable in Natural Language Inference (NLI)
tasks, where models must determine the logi-
cal relationship between pairs of sentences. The
MultiNLI dataset (Williams et al., 2018) serves
as a benchmark and exemplifies the challenges of
dataset artifacts.

1.2 Objectives

In this study, we focus on mitigating dataset arti-
facts by employing a fine-tuning strategy on the
ELECTRA-small model. Our initial analysis re-
vealed that certain genres, notably ”slate,” present
significant classification challenges due to their
complexity. Inspired by previous work that high-
lights the utility of contrast sets and adversarial ex-
amples in identifying model weaknesses (Gardner
et al., 2020), (Jia and Liang, 2017), we gener-
ated contrast sets to evaluate model performance
and synthetically generated adversarial examples
to probe further into model vulnerabilities.

Our approach centered around an ensemble-
based debiasing method using a weak-strong
model schema. The weak model was trained with
access only to hypotheses, capturing superficial
artifacts, while the strong model learned residu-
als of target labels minus the weak model’s logits.
This strategy aimed to enhance model robustness
by enabling the strong model to learn patterns be-
yond those captured by dataset artifacts. During
inference, combining logits from both models im-
proved overall accuracy, demonstrating the effec-
tiveness of this approach in enhancing NLP model
robustness against dataset artifacts. Our findings
contribute to a growing body of research focused
on improving model generalization through tar-
geted interventions (Swayamdipta et al., 2020).

These results suggest that strategic fine-tuning
and ensemble-based debiasing can effectively ad-
dress complex samples and improve generaliza-
tion and robustness across diverse genres.

2 Related Work

2.1 Dataset Artifacts in NLP

In our exploration of dataset artifacts within Nat-
ural Language Processing (NLP), we recognize
these artifacts as spurious correlations that mod-
els exploit to achieve high performance without



genuine task comprehension. These artifacts of-
ten arise from biases in data collection and anno-
tation processes, leading models to learn shortcuts
instead of true semantic understanding (Poliak et
al., 2018). For instance, in NLI, models can pre-
dict entailment or contradiction based solely on
superficial cues like lexical overlaps, rather than
engaging in deep semantic reasoning (McCoy et
al., 2019). This dependency results in models
that perform well on benchmark datasets but falter
when faced with real-world scenarios where such
artifacts are usually absent.

The MultiNLI dataset exemplifies these chal-
lenges, as it includes a diverse range of sentence
pairs from different domains, serving as a com-
prehensive benchmark for testing model general-
ization. However, the presence of dataset artifacts
within MultiNLI has been shown to skew model
performance, requiring robust evaluation methods
to identify and mitigate these biases. In our study,
we found that models trained on MultiNLI exhib-
ited up to a 10% decrease in accuracy when eval-
uated on contrast sets compared to original test
sets. We then employed contrast sets and syn-
thetically generated adversarial examples to probe
model vulnerabilities more effectively. Contrast
sets involve creating small modifications to exist-
ing examples to test whether models rely on super-
ficial cues (Gardner et al., 2020). By manually an-
notating and altering inputs while preserving their
semantic meaning, we aimed to better understand
model vulnerabilities and the extent of their re-
liance on dataset artifacts. Additionally, adversar-
ial examples were generated to introduce seman-
tic perturbations that challenge the model’s under-
standing, further exposing its reliance on these ar-
tifacts.

2.2 Methods for Mitigating Artifacts

To mitigate the impact of dataset artifacts, we in-
vestigated approaches aimed at enhancing model
robustness and generalization. Our primary fo-
cus was on implementing an ensemble-based debi-
asing method using a weak-strong model schema
(Clark et al., 2019). This involved training a weak
model with access only to hypotheses, capturing
superficial dataset artifacts, while the strong model
learned the residuals of target labels minus the
weak model’s logits. This approach aimed to en-
able the strong model to learn beyond the superfi-
cial patterns captured by the weak model.

Adversarial training was also a prominent
method employed, involving the generation of ad-
versarial examples designed to exploit model vul-
nerabilities (Jia and Liang, 2017). These exam-
ples were crafted by introducing perturbations that
challenged the model’s understanding, thereby im-
proving its resilience against unexpected inputs
and reducing dependency on dataset artifacts.

In our work, we leveraged contrast sets to sys-
tematically evaluate model weaknesses and ad-
versarial sets using Claude Sonnet LLM hosted
through AWS Bedrock. This allowed us to probe
deeper into model vulnerabilities and refine our
strategies for improving robustness. By focus-
ing on these, we were able to develop a resilient
model. These methods collectively contribute to a
more nuanced understanding of how models inter-
act with data and provide pathways for developing
NLP systems better equipped for real-world appli-
cations.

3 Methodology

3.1 Baseline
In our baseline model training phase, we
fine-tuned the ELECTRA-small model on the
MultiNLI dataset to establish a baseline for per-
formance. This process involved using all data,
with particular attention to understanding genre-
specific challenges. One of our key observations
was that the ”slate” genre posed significant dif-
ficulties for the model. Upon further investiga-
tion, we discovered that this genre exhibited one of
the highest ratios of hypothesis to premise lengths.
This indicated that longer premises relative to hy-
potheses often led to incorrect classifications, sug-
gesting the model struggled with processing ex-
tensive contextual information effectively.

Figure 1: Hypothesis Length by Genre



Figure 2: Premise Length by Genre

3.2 Hypothesis Summarization

In an effort to improve accuracy, particularly for
challenging genres like ”slate,” we implemented
a summarization technique aimed at reducing the
complexity of hypotheses while retaining essen-
tial information. This process involved using a
BART-large-CNN model to summarize hypothe-
ses with high premise-to-hypothesis ratios, specif-
ically targeting cases where the ratio exceeded
2.1 and the hypothesis length was greater than
50 tokens. We hypothesized that simplifying in-
puts could help improve classification accuracy
by minimizing noise and irrelevant details. The
summarization was applied in batches, dynami-
cally adjusting maximum and minimum lengths
for each hypothesis to ensure effective summa-
rization. This step was crucial in refining our un-
derstanding of how input length discrepancies af-
fected model performance, allowing us to address
specific weaknesses in processing extensive con-
textual information effectively.

Figure 3: Hypothesis to Premise Length Ratio vs.
Premise to Hypothesis Length Ratio

3.3 Contrast and Adversarial Set Analysis

To gain deeper insights into the model’s perfor-
mance and identify specific areas of weakness,
we conducted an analysis using both contrast sets
and adversarial sets. We manually generated con-
trast sets comprising 300 examples in total, with
60 examples per class. These contrast sets were
crafted to test the model’s ability to handle sub-
tle variations in input data without altering se-
mantic meaning. By systematically evaluating the
model on these contrast sets, we pinpointed spe-
cific error categories such as negation and numer-
ical changes, which provided insights into how
well the model generalized beyond its training
data.

Premise: “So far, however, the number of
mail pieces lost to alternative bill-paying
methods is too small to have any material
impact on First-Class volume.”

Original Hypothesis: “The amount
of lost mail is huge and really impacts mail
volume”.

Contrast Hypothesis: “The amount
of lost mail is negligible and does not
impact mail volume.”

Above is an example of a contrast set for the
class fiction. Because the contrast hypothesis is
opposite, the gold labels will change.

Building on insights from contrast set eval-
uations, we generated adversarial examples us-
ing Claude Sonnet LLM hosted through AWS
Bedrock. This process involved crafting inputs
designed to challenge and probe vulnerabilities in
the model’s understanding by introducing pertur-
bations that maintained grammatical correctness
while altering semantic content. These adversar-
ial sets were necessary in testing the model’s re-
silience against unexpected inputs and further re-
fining our understanding of its limitations.

3.3.1 Prompt Engineering to Generate
Synthetic Data

We utilized specific prompts to guide the Claude
Sonnet LLM in generating adversarial hypotheses
synthetically. These prompts were crafted to in-
troduce subtle changes in meaning without com-
promising grammatical integrity. For example,



prompts ask the model to ”alter this hypothesis to
imply the opposite” or ”introduce a contradiction
without changing key terms.”

Premise: “Their country-place, Styles
Court, had been purchased by Mr.
Cavendish early in their married life.”

Original Hypothesis: “Styles Court
was bought by Mr. Cavendish early on.”.

Adversarial Hypothesis: “Styles Court
was inherited by Mr. Cavendish much later
in their married life.”

Above is an example of a adversarial hypothe-
sis, which is designed to challenge or contradict
an original hypothesis by presenting an alternative
perspective. It serves to test the robustness of the
original hypothesis and encourages evaluation of
assumptions.

3.3.2 Semantic Perturbations
The generated adversarial examples were de-
signed to introduce semantic perturbations that
would challenge the model’s ability to correctly
classify entailment, contradiction, or neutrality.
This involved altering key phrases or introducing
negations that changed the overall meaning while
keeping the structure intact.

3.4 Ensemble-Based Debiasing Using
Artifact Experts

In our approach to ensemble-based debiasing, we
leveraged the concept of training weak or partial
models to learn dataset artifacts and then used
these models to refine the main model’s output.
This method draws on techniques outlined by (He
et al., 2019), (Zhou and Bansal, 2020), (Utama et
al., 2020), and (Sanh et al., 2021).

3.4.1 Prominent Paper-Based Approach
In this, we implemented a weak-strong model
schema inspired by leading research (He He et
al., 2019). This approach involved training a weak
model specifically designed to capture correlations
associated with dataset artifacts. The weak model
focused on learning patterns typically exploited by
NLP models, such as lexical overlaps or syntactic
shortcuts, which do not contribute to genuine se-
mantic understanding. The strong model was then
trained to learn the residuals of the target labels

minus the weak model’s logits. This involved ad-
justing the loss function to minimize reliance on
features identified by the artifact expert, thereby
encouraging the main model to focus on deeper
semantic reasoning. During inference, only the
strong model is used, to generalize beyond super-
ficial patterns.

3.4.2 Our Tweaked Approach
Building on insights from the paper-based method,
we developed an approach to improve the robust-
ness model’s against dataset artifacts by integrat-
ing outputs from both weak and strong models.
This method involves first using a weak model to
capture superficial patterns in the data, such as lex-
ical overlaps, which are often exploited by mod-
els due to dataset artifacts. The strong model, on
the other hand, focuses on learning deeper seman-
tic relationships by working with the residuals of
the target labels after subtracting the weak model’s
logits. During inference, we combined the logits
from both models to form a final prediction.

This strategy allows us to leverage the strengths
of both models, aiming for a more balanced and
nuanced understanding of the input data. By com-
bining the outputs of these two models, we aimed
to address the limitations each model faces when
used independently. While the weak model helps
in identifying and mitigating superficial biases, the
strong model enhances semantic understanding.

4 Experiments and Results

4.1 Evaluation Metrics

To evaluate the performance of our models, we
utilized several key metrics that provide insights
into different aspects of model accuracy and ro-
bustness. The primary metric was accuracy, which
measures the percentage of correctly classified ex-
amples across the dataset. Additionally, we em-
ployed precision, recall, and F1-score to gain a
deeper understanding of the model’s performance,
particularly in handling imbalanced classes. These
metrics were calculated separately as well for each
genre to identify specific areas of strength and
weakness.

4.2 Results on Baseline

The baseline evaluation of our ELECTRA-small
model on the MultiNLI dataset provided a foun-
dational understanding of its performance across
various genres. The model demonstrated consis-



tent global metrics, with accuracy, F1-score, pre-
cision, and recall all reflecting solid performance.

• Class Performance: The model showed
varying levels of accuracy across different
classes, with class 0 achieving the highest
accuracy. This suggests that the model was
more effective at handling certain types of en-
tailment relationships.

• Genre Performance: The model performed
best on the ”government” genre, while the
”slate” genre posed more difficulties, reflect-
ing its complex linguistic structures. This
variation led to the summarization model
where certain hypothesis were summarized
before training.

Global Metrics Accuracy (%)
Accuracy 80.66%
Weighted F1-Score 80.68%
Weighted Precision 80.72%
Weighted Recall 80.66%

Table 1: Baseline model metrics

4.3 Hypothesis Summarization Results
The implementation of hypothesis summarization
aimed to address the challenges posed by genres
with high premise-to-hypothesis length ratios, par-
ticularly ”slate.” By employing the BART-large-
CNN model, we effectively reduced the complex-
ity of hypotheses while retaining essential infor-
mation. This approach was designed to improve
classification accuracy by minimizing noise and ir-
relevant details.

• Improved Clarity: The summarization pro-
cess helped streamline inputs, making it eas-
ier for the model to classify without being
overwhelmed by contextual information.

• Performance Across Genres: While the
summarization showed promise in simplify-
ing inputs, its impact varied across genres. It
was beneficial for genres where reducing in-
put length led to accurate classifications.

• Trade-offs: Despite these improvements,
the overall performance gains were modest,
highlighting the need for further refinement
in balancing input while maintaining seman-
tic richness.

Global Metric Accuracy
Global Accuracy 0.7674
Weighted F1-Score 0.7668
Weighted Precision 0.7667
Weighted Recall 0.7674

Table 2: Hypothesis summarized results

These results underscore the potential of hy-
pothesis summarization as a tool for enhancing
model performance in specific contexts, though
exploration is needed to maximize its benefits.

4.4 Contrast and Adversarial Set Results

The evaluation of our model using contrast and
adversarial sets provided insights into its ability
to handle nuanced variations in input data. Ini-
tially, the baseline model demonstrated a disparity
in performance between contrast and non-contrast
examples, with overall accuracy lower on contrast
sets. This highlighted the model’s reliance on su-
perficial patterns rather than deep semantic under-
standing.

Metric Baseline + Baseline on
Cont./Adversarial Contrast

Accuracy 0.7538 0.7487
F1-Score 0.7383 0.7503
Precision 0.7535 0.7554
Recall 0.7538 0.7487

Table 3: Metrics for Baseline fine-tuned on Con-
trast/Adversarial vs. Baseline on Contrast

Baseline Performance: The baseline model
struggled particularly with contrast examples,
achieving lower accuracy compared to non-
contrast examples. This indicated a need for
strategies that can enhance the model’s ability to
generalize beyond dataset artifacts.

Enhanced Training with Contrast and Ad-
versarial Sets: By fine-tuning the model using
both contrast and adversarial sets, we observed
improvements in handling these challenging ex-
amples. Although the overall performance on the
entire dataset showed only modest gains, the tar-
geted improvements on contrast sets were signifi-
cant. The refined model demonstrated better pre-
cision and recall on contrast examples.

Observations: Despite improved performance
on targeted examples, there was a trade-off in
overall accuracy. This underscores the challenge



of balancing specific enhancements with general
task performance. The insights gained from this
analysis paved path for our ensemble-based debi-
asing strategy.

4.5 Ensemble-Based Debiasing Results

In our ensemble-based debiasing approach, we ex-
plored two strategies using a weak-strong model
schema to mitigate dataset artifacts.

4.5.1 Paper-Based Approach
The (He He et al., 2019) paper-based approach in-
volved training a weak model to capture superfi-
cial patterns by accessing only hypotheses, while
the strong model learned residuals of target la-
bels minus the weak model’s logits. During infer-
ence, only the strong model was used. However,
the strong model struggled to generalize indepen-
dently, resulting in moderate improvements.

Global Metric Accuracy
Global Accuracy 0.7600
Weighted F1-Score 0.7594
Weighted Precision 0.7611
Weighted Recall 0.7600

Table 4: Metrics for the Strong Model

Overall Metric Accuracy
Overall Accuracy 0.7136
Weighted F1-Score 0.7166
Weighted Precision 0.7214
Weighted Recall 0.7136

Table 5: Metrics for the Strong Model on Contrast
Set

4.5.2 Alternative Approach
Recognizing the limitations of the paper-based
method, we developed a novel strategy that com-
bines the outputs from both weak and strong mod-
els during inference. This approach aims to ad-
dress the limitations of using either model in-
dependently by leveraging their complementary
strengths. The weak model focuses on captur-
ing superficial patterns, such as lexical overlaps,
which are often exploited due to dataset artifacts.
Meanwhile, the strong model is designed to learn
deeper semantic relationships by working with the
residuals of the target labels after subtracting the
weak model’s logits. By integrating the logits

from both models, we aimed to form a more bal-
anced and nuanced prediction.

The results of this combined approach demon-
strated an improvement in overall performance
metrics. Specifically, the global accuracy achieved
was 80.19%, with a weighted F1-score and recall
both at 80.19%, and weighted precision slightly
higher at 80.23%. These metrics indicate that this
method effectively enhanced robustness and ac-
curacy by utilizing both models’ strengths. Ad-
ditionally, when tested on contrast sets, this ap-
proach maintained a reasonable level of perfor-
mance with an overall accuracy of 74.62%, similar
to baseline model evaluated on contrast sets, high-
lighting its capability in handling complex artifact-
laden examples effectively than traditional meth-
ods.

Global Metric Accuracy
Global Accuracy 0.8019
Weighted F1-Score 0.8019
Weighted Precision 0.8023
Weighted Recall 0.8019

Table 6: Metrics of the weak-strong model ap-
proach by combining logits

Overall Metric Accuracy
Overall Accuracy 0.7462
Weighted F1-Score 0.7477
Weighted Precision 0.7503
Weighted Recall 0.7462

Table 7: Metrics of the weak-strong model ap-
proach on Contrast set

5 Discussion

5.1 Deeper Understanding of Model
Behavior and Results

Our evaluations using contrast and adversarial sets
provided valuable insights into the behavior of
the ELECTRA-small model. The contrast sets
highlighted specific challenges, such as difficul-
ties with negation and numerical changes, indi-
cating that the model struggles with errors beyond
certain discrepancies. These findings suggest that
while the model can handle basic entailment and
contradiction cases, it often misclassifies exam-
ples which require semantic understanding.

The adversarial sets, generated synthetically,
further exposed vulnerabilities in the model’s



comprehension. By introducing semantic pertur-
bations while maintaining grammatical correct-
ness, these examples tested the model’s robust-
ness. The results showed a decrease in accuracy
on adversarial sets compared to both baseline and
contrast set evaluations, showing the model’s re-
liance on dataset artifacts and its need for im-
proved resilience against unexpected inputs.

The baseline achieved a global accuracy of
80.66%, providing a solid foundation but showing
limitations in handling complex linguistic struc-
tures. Our revised approach, which combined log-
its from both weak and strong models, resulted
in a slightly lower global accuracy of 80.19%.
Despite this decrease, combining outputs effec-
tively leveraged the strengths of both models,
demonstrating the benefits of integrating out-
puts to address dataset artifacts and its ability
in handling different linguistic inputs.

Figure 4: Evaluation Metrics Across Different
Methods Explored

These insights highlight the importance of ad-
dressing specific weaknesses through targeted in-
terventions like adversarial training and ensemble-
based debiasing using a weak-strong model
schema. By probing these vulnerabilities, we
refined our strategies and enhanced performance
across diverse genres highlighting the potential
of using both contrastive and adversarial training
techniques to improve model robustness against
dataset artifacts.

5.2 Limitations and Challenges
Despite the advancements achieved through our
interventions, several limitations and challenges
emerged during the project. A notable challenge
was the complexity of the ”slate” genre, which
consistently posed difficulties for the model due to

its high premise-to-hypothesis length ratio. This
often led to misclassifications, highlighting the
need for more sophisticated techniques to handle
such data structures. The model’s struggle with
this genre underscores the importance of develop-
ing methods that can better manage extensive con-
textual information.

Additionally, while adversarial training was ef-
fective in exposing model weaknesses, it also
introduced challenges in balancing perturbations
with maintaining semantic integrity. Crafting ad-
versarial examples that are both challenging and
realistic required careful consideration to avoid
skewing results. The synthetically generated sets
had to be filtered out due to certain data noise,
probably due to LLM hallucinations.

Furthermore, our ensemble model strategy, re-
quired substantial computational resources and
time for training multiple models highlighting a
trade-off between achieving higher accuracy and
managing resource constraints. The computa-
tional demands of ensemble methods require ex-
ploring more efficient training techniques that can
deliver similar benefits. These limitations point to
areas for future research, such as developing more
efficient training methods that can handle complex
linguistic structures and exploring techniques like
dynamic model adaptation and resource-efficient
training algorithms.

6 Conclusion

In this paper, we explored strategies to mitigate
dataset artifacts in the MultiNLI dataset, with a
focus on enhancing model robustness and gen-
eralization. Our approach involved fine-tuning
the ELECTRA-small model, analyzing its perfor-
mance across different genres, and implementing
targeted interventions such as contrast sets and ad-
versarial training and implementing the ensemble-
debiasing from the paper (He He et al., 2019).

• Genre-Specific Challenges: Our analysis re-
vealed that the ”slate” genre posed signifi-
cant challenges due to its high premise-to-
hypothesis length ratio, which often led to
misclassifications. By implementing summa-
rization techniques on ”slate”, we improved
performance across other genres.

• Contrast sets and Adversarial Training:
Through contrast set evaluations, we iden-
tified key error categories and by training



on adversarial examples synthetically, we ex-
posed vulnerabilities in the model’s under-
standing. This approach helped reduce re-
liance on dataset artifacts and improved re-
silience against unexpected inputs.

• Ensemble-Based Debiasing: Using a weak-
strong model schema, the weak model fo-
cused on capturing superficial artifacts by
accessing only hypotheses, while the strong
model learned residuals of target labels mi-
nus the weak model’s logits. This ensemble
strategy enhanced robustness by allowing the
strong model to learn beyond superficial pat-
terns.

7 Future Work

Building on our findings, future research could
explore more advanced techniques for manag-
ing complex linguistic structures in challenging
dataset classes. Developing efficient training
methods that naturally handle these complexi-
ties could enhance model robustness. For in-
stance, employing hybrid NLP algorithms that in-
tegrate symbolic and statistical methods might of-
fer a balanced approach to managing intricate lan-
guage patterns. Additionally, expanding the scope
of adversarial training to include a wider range
of perturbations can provide deeper insights into
model vulnerabilities. This could involve using
diverse adversarial strategies, such as multi-level
and sentence-level attacks, to challenge models
more comprehensively. Such efforts would guide
the development of more resilient NLP systems
capable of maintaining performance across varied
scenarios.
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